summaryrefslogtreecommitdiff
path: root/lib/lib5.c
blob: 04c7806ed73298acb20ac1c6f5ad3476c0621785 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#include "lib5.h"
#include "lib4.h"
#include "lib3.h"
#include "lib2.h"
#include "lib.h"

void mod_bignums(unsigned char *number, unsigned char *mod, unsigned int base, unsigned char **erg)
{
	mpz_t number_mp, mod_mp, erg_mp;

	mpz_init_set_str(number_mp, number, base);
	mpz_init_set_str(mod_mp, mod, base);
	mpz_init(erg_mp);
	mpz_mod(erg_mp, number_mp, mod_mp);

	(*erg) = malloc(mpz_sizeinbase(erg_mp,16)+2);
	mpz_get_str(*erg, base, erg_mp);
}

void modexp_mpz(mpz_t *base_mp, unsigned char *exp, unsigned char *mod, int string_base,
		mpz_t *erg_mp)
{
	mpz_t exp_mp, mod_mp;
 
	mpz_init_set_str(exp_mp, exp, string_base);
	mpz_init_set_str(mod_mp, mod, string_base);
	mpz_init(*erg_mp);
 
	mpz_powm(*erg_mp, *base_mp, exp_mp, mod_mp);
 
	mpz_clear(exp_mp);
	mpz_clear(mod_mp);
}


void modexp_bignums(unsigned char *base, unsigned char *exp, unsigned char *mod, int string_base,
		mpz_t *erg_mp)
{
	mpz_t base_mp, exp_mp, mod_mp;
 
	mpz_init_set_str(base_mp, base, string_base);
	mpz_init_set_str(exp_mp, exp, string_base);
	mpz_init_set_str(mod_mp, mod, string_base);
	mpz_init(*erg_mp);
 
	mpz_powm(*erg_mp, base_mp, exp_mp, mod_mp);
	mpz_clear(base_mp);
	mpz_clear(exp_mp);
	mpz_clear(mod_mp);

	//gmp_printf("%Zd\n", *erg_mp); 
}

void dh_init(struct dh_param *dh)
{
	dh->p = "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024"
		"e088a67cc74020bbea63b139b22514a08798e3404ddef9519b3cd"
		"3a431b302b0a6df25f14374fe1356d6d51c245e485b576625e7ec"
		"6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5ae9f"
		"24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361"
		"c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552"
		"bb9ed529077096966d670c354e4abc9804f1746c08ca237327fff"
		"fffffffffffff";
	dh->g = "2";
}
void dh_generate_secret_keys(struct dh_param *dh)
{
	unsigned char b_tmp[1000];
	unsigned char a_tmp[1000];
	generate_random_hex(a_tmp,1000);
	a_tmp[999] = '\0';
	mod_bignums(a_tmp,dh->p,16,&(dh->a));
	generate_random_hex(b_tmp,1000);
	b_tmp[999] = '\0';
	mod_bignums(b_tmp,dh->p,16,&(dh->b));
}

void dh_generate_public_keys(struct dh_param *dh)
{
	modexp_bignums(dh->g, dh->a, dh->p, 16, &(dh->A));
	modexp_bignums(dh->g, dh->b, dh->p, 16, &(dh->B));
}

void dh_get_session_key(struct dh_param *dh)
{
	modexp_mpz(&(dh->B), dh->a, dh->p, 16, &(dh->s1));
	modexp_mpz(&(dh->A), dh->b, dh->p, 16, &(dh->s2));
	//printf("sessino keys are:\n");
	gmp_printf("%Zd\n", dh->s1);
	//gmp_printf("%Zd\n", dh->s1);
}

void do_dh_key_exchange(struct dh_param *dh)
{
	dh_init(dh);
	dh_generate_secret_keys(dh);
	dh_generate_public_keys(dh);
	dh_get_session_key(dh);
}

void dh_init_bignum(struct dh_param_bignum *dh)
{
	dh->A = BN_new();
	dh->B = BN_new();
	dh->a = BN_new();
	dh->b = BN_new();
	dh->p = BN_new();
	dh->g = BN_new();
	dh->s1 = BN_new();
	dh->s2 = BN_new();
	unsigned char *p =
		"ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024"
		"e088a67cc74020bbea63b139b22514a08798e3404ddef9519b3cd"
		"3a431b302b0a6df25f14374fe1356d6d51c245e485b576625e7ec"
		"6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5ae9f"
		"24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361"
		"c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552"
		"bb9ed529077096966d670c354e4abc9804f1746c08ca237327fff"
		"fffffffffffff";
	unsigned char *res = malloc(strlen(p));
	int len_dec = decode_hex_string(p, res);
	BN_bin2bn(res, len_dec, dh->p);
	BN_set_word(dh->g, 2);
}
void dh_generate_secret_keys_bignum(struct dh_param_bignum *dh)
{
	BN_pseudo_rand(dh->a, 8000, -1, -1);
	BN_pseudo_rand(dh->b, 8000, -1, -1);
}

void dh_generate_public_keys_bignum(struct dh_param_bignum *dh)
{
	BN_mod_exp(dh->A, dh->g, dh->a, dh->p, ctx);
	BN_mod_exp(dh->B, dh->g, dh->b, dh->p, ctx);
}

void dh_get_session_key_bignum(struct dh_param_bignum *dh)
{
	BN_mod_exp(dh->s1, dh->B, dh->a, dh->p, ctx);
	BN_mod_exp(dh->s2, dh->A, dh->b, dh->p, ctx);
}

void do_dh_key_exchange_bignum(struct dh_param_bignum *dh)
{
	dh_init_bignum(dh);
	dh_generate_secret_keys_bignum(dh);
	dh_generate_public_keys_bignum(dh);
	dh_get_session_key_bignum(dh);
}

void sha1_key_from_dh(struct dh_param *dh, unsigned char *key)
{
	char *s1_char;
	SHA1Context sha1;

	s1_char = malloc(mpz_sizeinbase(dh->s1,16)+2);
	memset(s1_char, 0, 16);
	mpz_get_str(s1_char, 16, dh->s1);
	SHA1Reset(&sha1);
	// only use the first 16 bytes accoring to the challenge
	SHA1Input(&sha1, s1_char, 16);
	SHA1Result(&sha1);

	memcpy(key, &(sha1.Message_Digest), 20);
}

void dh_mitm(struct dh_param *dh)
{
	dh_init(dh);
	dh_generate_secret_keys(dh);
	dh_generate_public_keys(dh);
	// swap the public keys with p
	// p mod p will always be 0; s = 0
	mpz_init_set_str(dh->A, dh->p, 16);
	mpz_init_set_str(dh->B, dh->p, 16);
	dh_get_session_key(dh);
}

void srp_context_init(struct srp_context *s)
{
	s->salt = BN_new();
	s->v = BN_new();
	s->g = BN_new();
	s->N = BN_new();
	s->a = BN_new();
	s->u = BN_new();
	s->k = BN_new();
	s->b = BN_new();
	s->A = BN_new();
	s->B = BN_new();
	
	char *N_str = "ffffffffffffffffc90fdaa22168c234c4c6628b80dc1cd129024"
		"e088a67cc74020bbea63b139b22514a08798e3404ddef9519b3cd"
		"3a431b302b0a6df25f14374fe1356d6d51c245e485b576625e7ec"
		"6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5ae9f"
		"24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361"
		"c55d39a69163fa8fd24cf5f83655d23dca3ad961c62f356208552"
		"bb9ed529077096966d670c354e4abc9804f1746c08ca237327fff"
		"fffffffffffff";
	unsigned char *res = malloc(strlen(N_str));
	int len_dec = decode_hex_string(N_str, res);
	
	BN_bin2bn(res, len_dec, s->N);
	BN_set_word(s->g, 2);
	BN_set_word(s->k, 3);
}

void srp_compute_x(BIGNUM *salt, unsigned char *password, char *sha1_hash)
{
	unsigned char *to_hash;
	SHA1Context sha1;
	to_hash = malloc(strlen(password) + BN_num_bytes(salt));

	BN_bn2bin(salt, to_hash);
	memcpy(&to_hash[BN_num_bytes(salt)-1], password, strlen(password));

	SHA1Reset(&sha1);
	SHA1Input(&sha1, to_hash, strlen(to_hash));
	SHA1Result(&sha1);
	memcpy(sha1_hash, &(sha1.Message_Digest), 20);
}

void srp_server_init(char *email, char *password, struct srp_context *srpc)
{
	char sha1_hash[20];
	BIGNUM *x = BN_new();

	BN_pseudo_rand(srpc->salt, 256, -1, -1);

	srp_compute_x(srpc->salt, password, sha1_hash);
	BN_bin2bn(sha1_hash, 20, x);
	BN_mod_exp(srpc->v, srpc->g, x, srpc->N, ctx);
}

void srp_client_send1(char *email, struct srp_context *srpc)
{
	BN_pseudo_rand(srpc->a, 1024, -1, -1);
	BN_mod_exp(srpc->A, srpc->g, srpc->a, srpc->N, ctx);
}

void srp_server_send1(struct srp_context *srpc)
{
	BIGNUM *t = BN_new();
	BIGNUM *t2 = BN_new();
	BN_pseudo_rand(srpc->b, 1024, -1, -1);
	BN_mod_exp(t, srpc->g, srpc->b, srpc->N, ctx);
	BN_mod_mul(t2, srpc->k, srpc->v, srpc->N, ctx);
	BN_mod_add(srpc->B, t, t2, srpc->N, ctx);
}

void srp_compute_uH(struct srp_context *srpc)
{
	SHA1Context sha1;
	unsigned char uH[20];
	unsigned char *res = malloc(BN_num_bytes(srpc->A) + BN_num_bytes(srpc->B));
	BN_bn2bin(srpc->A, res);
	BN_bn2bin(srpc->B, &res[BN_num_bytes(srpc->A)-1]);

	SHA1Reset(&sha1);
	SHA1Input(&sha1, res, BN_num_bytes(srpc->A) + BN_num_bytes(srpc->B));
	SHA1Result(&sha1);

	memcpy(uH, &(sha1.Message_Digest), 20);

	BN_bin2bn(uH, 20, srpc->u);
}

void srp_client_s_0_prepare_k(struct srp_context *srpc)
{
	SHA1Context sha1;
	BIGNUM *S = BN_new();
	BN_zero(S);

	char *s_str = malloc(BN_num_bytes(S));
	BN_bn2bin(S, s_str);
	SHA1Reset(&sha1);
	SHA1Input(&sha1, s_str, BN_num_bytes(S));
	SHA1Result(&sha1);
	memcpy(srpc->client_K, &(sha1.Message_Digest), 20);
}

void srp_client_prepare_k(struct srp_context *srpc, char *password)
{
	SHA1Context sha1;
	BIGNUM *x = BN_new();
	char K[20];
	char sha1_hash[20];

	srp_compute_x(srpc->salt, password, sha1_hash);
	BN_bin2bn(sha1_hash, 20, x);

	BIGNUM *S = BN_new();
	BIGNUM *tmp = BN_new();
	BIGNUM *tmp1 = BN_new();
	BIGNUM *left= BN_new();
	BN_mod_exp(tmp1, srpc->g, x, srpc->N, ctx);
	BN_mod_mul(tmp, srpc->k, tmp1, srpc->N, ctx);
	BN_mod_sub(left, srpc->B, tmp, srpc->N, ctx);

	BN_mod_mul(tmp, srpc->u, x, srpc->N, ctx);
	BN_mod_add(tmp, tmp, srpc->a, srpc->N, ctx);
	BN_mod_exp(S, left, tmp, srpc->N, ctx);

	char *s_str = malloc(BN_num_bytes(S));
	BN_bn2bin(S, s_str);
	SHA1Reset(&sha1);
	SHA1Input(&sha1, s_str, BN_num_bytes(S));
	SHA1Result(&sha1);
	memcpy(srpc->client_K, &(sha1.Message_Digest), 20);
}

void srp_server_prepare_k(struct srp_context *srpc)
{
	BIGNUM *S = BN_new();
	BIGNUM *tmp = BN_new();
	char K[20];
	SHA1Context sha1;

	BN_mod_exp(tmp, srpc->v, srpc->u, srpc->N, ctx);
	BN_mod_mul(tmp, tmp, srpc->A, srpc->N, ctx);
	BN_mod_exp(S, tmp, srpc->b, srpc->N, ctx);
	char *s_str = malloc(BN_num_bytes(S));
	BN_bn2bin(S, s_str);
	SHA1Reset(&sha1);
	SHA1Input(&sha1, s_str, BN_num_bytes(S));
	SHA1Result(&sha1);
	memcpy(srpc->server_K, &(sha1.Message_Digest), 20);
}

/**
  * in C the % operator is more the remainder than the modulo
  * so implement modulo which also works fine with negative numbers
  */
int modulo(int a, int b)
{
	int mod = a % b;

	if (mod*b < 0)
		return mod + b;
	else
		return mod;
}

void extended_euclid_algo(int a, int b, struct extended_euclid *e)
{
	struct extended_euclid *tmp = malloc(sizeof(struct extended_euclid));

	if (b == 0) {
		e->d=a;
		e->s=1;
		e->t=0;
		return;
	}
	extended_euclid_algo(b, a % b, tmp);
	e->d = tmp->d;
	e->s = tmp->t;
	e->t = tmp->s - (a / b) * tmp->t;
	free(tmp);
	return;
}

int modular_multiplicative_inverse(int number, int _modulo)
{
	struct extended_euclid tmp;
	extended_euclid_algo(number, _modulo, &tmp);
	// only has a inverse iff gcd = 1
	if ( tmp.d != 1)
		return INT_MIN;

	// mod works not fine for negytive numbers in c
	return modulo(tmp.s, _modulo);
}

int rsa_encrypt(int message, struct rsa_key *public)
{
	return modulo((message^public->exponent), public->modulo);
}

int rsa_decrpyt(int message, struct rsa_key *private)
{
	return modulo((message^private->exponent), private->modulo);
}

void die(char *message)
{
	printf("%s\n", message);
	exit(1);
}

int rsa_encrypt_bignum(BIGNUM *message, BIGNUM *res, struct rsa_key_bignum *public)
{
	return BN_mod_exp(res, message, public->exponent, public->modulo, ctx);
}

int rsa_decrypt_bignum(BIGNUM *message, BIGNUM *res, struct rsa_key_bignum *private)
{
	return BN_mod_exp(res, message, private->exponent, private->modulo, ctx);
}

void extended_euclid_algo_bignum(BIGNUM *a, BIGNUM *b, struct extended_euclid_bignum *e)
{
	struct extended_euclid_bignum tmp;

	if (BN_is_zero(b)) {
		BN_copy(e->d, a);
		BN_one(e->s);
		BN_zero(e->t);
		return;
	}
	tmp.d = BN_new();
	tmp.s = BN_new();
	tmp.t = BN_new();

	BIGNUM *mod = BN_new();
	BN_mod(mod, a, b, ctx);

	extended_euclid_algo_bignum(b, mod, &tmp);
	BN_copy(e->d, tmp.d);
	BN_copy(e->s, tmp.t);
	BN_div(mod, NULL, a, b, ctx);
	BN_mul(mod, mod, tmp.t, ctx);
	BN_sub(e->t, tmp.s, mod);
	
	
	BN_free(mod);
	BN_free(tmp.d);
	BN_free(tmp.s);
	BN_free(tmp.t);
	return;
}

int modular_multiplicative_inverse_bignum_my(BIGNUM *res, BIGNUM *number, BIGNUM *modulo)
{
	struct extended_euclid_bignum tmp;
	tmp.d = BN_new();
	tmp.s = BN_new();
	tmp.t = BN_new();
	extended_euclid_algo_bignum(number, modulo, &tmp);
	// only has a invese iff gcd = 1
	if (!BN_is_one(tmp.d))
		return -1;

	return BN_nnmod(res, tmp.s, modulo, ctx);
}

int rsa_generate_key_bignum(struct rsa_key_bignum *public, struct rsa_key_bignum *private)
{
	// RSA with bignum
	// using openssl'S BN
	BIGNUM *p = BN_new();
	// well should check here for error but asusme infinte memory here
	BIGNUM *q = BN_new();

	BN_generate_prime_ex(p, 256, 1, NULL, NULL, NULL);
	do {
		BN_generate_prime_ex(q, 256, 1, NULL, NULL, NULL);
	} while (!BN_cmp(p, q));
	BIGNUM *n = BN_new();

	if(!BN_mul(n,p,q,ctx))
		die("error multipling p and q");

	BIGNUM *et = BN_new();
	BIGNUM *p_1 = BN_new();
	BIGNUM *q_1= BN_new();
	BIGNUM *one = BN_new();
	BN_one(one);

	if(!BN_sub(p_1, p, one))
		die("could not substract one from p");

	if(!BN_sub(q_1, q, one))
		die("could not substract one from q");

	if(!BN_mul(et, p_1, q_1, ctx))
		die("could not multiply p*q");


	BIGNUM *e = BN_new();
	BN_set_word(e, 3);
	//BIGNUM *d = BN_mod_inverse(NULL, e, et, ctx);
	BIGNUM *d = BN_new();
	modular_multiplicative_inverse_bignum_my(d, e, et);
	public->exponent = BN_new();
	public->modulo = BN_new();
	private->exponent = BN_new();
	private->modulo = BN_new();
	public->exponent = BN_dup(e);
	BN_copy(public->modulo, n);
	BN_copy(private->exponent, d);
	BN_copy(private->modulo, n);

}

int free_rsa_key_bignum(struct rsa_key_bignum *t)
{
	BN_free(t->exponent);
	BN_free(t->modulo);
}

/**
  * computes the nth root of number.
  * Note that the computed root is always an integer
  * does not work good for numbers which are not divisible by n :-(
  **/ 
int nth_root_bignum(BIGNUM *res, BIGNUM *number, BIGNUM *n)
{
	BIGNUM *n_1 = BN_new();
	BIGNUM *r = BN_new();
	BIGNUM *d = BN_new();
	BIGNUM *zero = BN_new();
	BN_zero(zero);
	BN_set_word(r, 1);
	BN_set_word(d, 1);
	BN_sub(n_1, n, d);

	do {
		BN_exp(res, r, n_1, ctx);
		BN_div(res, NULL, number, res, ctx);
		BN_sub(res, res, r);
		BN_div(d, NULL, res, n, ctx);
		BN_add(r, r, d);
	} while (BN_cmp(d, zero));

	BN_copy(res, r);
	BN_free(zero);
	BN_free(r);
	BN_free(d);
	BN_free(n_1);
}
int rsa_broadcast_cube(BIGNUM *res, BIGNUM **a, BIGNUM **n)
{
	BIGNUM *tmp = BN_new();
	BIGNUM *N= BN_new();
	BIGNUM *N_ni = BN_new();
	BIGNUM *sum = BN_new();
	BIGNUM *n_3 = BN_new();

	BN_set_word(n_3, 3);
	BN_one(N);
	BN_zero(sum);
	int i;

	for(i=0;i<3;i++)
		BN_mul(N, N, n[i], ctx);

	for(i=0;i<3;i++) {
		BN_div(N_ni, NULL, N, n[i], ctx);
		BN_mod_inverse(tmp, N_ni, n[i], ctx);
		modular_multiplicative_inverse_bignum_my(tmp, N_ni, n[i]);
		BN_mul(tmp, tmp, N_ni, ctx);
		BN_mul(tmp, tmp, a[i], ctx);
		BN_add(sum, sum, tmp);
	}

	BN_nnmod(sum, sum, N, ctx);
	nth_root_bignum(res, sum, n_3);
}

int chinese_remainder_theorem_bignum(BIGNUM *solution, BIGNUM *sol_no_mod, BIGNUM **a, BIGNUM **n, int len)
{
	int i,j;

	for(i=0;i<len;i++) {
		for(j=i+1;j<len;j++) {
			if(!check_co_prime_bignum(n[i], n[j]))
				return -1;
		}
	}

	__chinese_remainder_theorem_bignum(solution, sol_no_mod, a, n, len);
}

int check_co_prime_bignum(BIGNUM *a, BIGNUM *b)
{
	struct extended_euclid_bignum e;
	e.d = BN_new();
	e.s = BN_new();
	e.t = BN_new();

	BIGNUM *one = BN_new();
	BN_one(one);
	extended_euclid_algo_bignum(a, b, &e);
	int ret = BN_cmp(e.d, one);
	BN_free(one);
	BN_free(e.d);
	BN_free(e.s);
	BN_free(e.t);
	return (ret == 0);
}

int chinese_remainder_theorem(int *a, int *n, int len)
{
	// check if n[i] are pair-wise co-prime since it is a pre-condition
	// for the chinese remainder theorem
	int i, j;

	for(i=0;i<len;i++) {
		for(j=i+1;j<len;j++) {
			if(!check_co_prime(n[i], n[j]))
				return -1;
		}
	}

	return __chinese_remainder_theorem(a, n, len);

}
int __chinese_remainder_theorem_bignum(BIGNUM *solution, BIGNUM *sol_no_mod, BIGNUM **a, BIGNUM **n, int len)
{
	BIGNUM *N = BN_new();
	BIGNUM *N_ni = BN_new();
	BIGNUM *tmp  = BN_new();
	BN_one(N);
	BN_zero(solution);
	BN_zero(sol_no_mod);
	int i;
	struct extended_euclid_bignum e;
	e.d = BN_new();
	e.s = BN_new();
	e.t = BN_new();

	for(i=0;i<len;i++)
		BN_mul(N, N, n[i], ctx);


	for(i=0;i<len;i++) {
		BN_div(N_ni, NULL, N, n[i], ctx);
		extended_euclid_algo_bignum(n[i], N_ni, &e);
		BN_mul(tmp, a[i], e.t, ctx);
		BN_mul(tmp, tmp, N_ni, ctx);
		BN_add(solution, solution, tmp);
	}
	BN_copy(sol_no_mod, solution);
	BN_nnmod(solution, solution, N, ctx);
	BN_free(N);
	BN_free(N_ni);
	BN_free(tmp);
	BN_free(e.d);
	BN_free(e.s);
	BN_free(e.t);
}

int check_co_prime(int a, int b)
{
	struct extended_euclid e;
	extended_euclid_algo(a, b, &e);
	return (e.d == 1);
}

/** assumes that the system is sovleable with crt, aka. that the n_i are co-prime
  *
  **/
int __chinese_remainder_theorem(int *a, int *n, int len)
{
	int N = 1;
	int i = 0;
	int solution = 0;
	struct extended_euclid e;

	for(i=0;i<len;i++)
		N *= n[i];

	for(i=0;i<len;i++) {
		int N_ni = N / n[i];
		extended_euclid_algo(n[i], N_ni, &e);
		solution += a[i] * e.t * N_ni;
	}

	return modulo(solution, N);
}


#define NTH_ROOT_PRECISION 0.00001
double nth_root_wr(double x, int n)
{
	double r = 1;
	double d = 1;

	do {
		d = (x / pow(r, n - 1) - r) / n;
		r += d;
	}
	while (d > NTH_ROOT_PRECISION || d < -NTH_ROOT_PRECISION);
	return r;
}